منابع مشابه
A Lanczos bidiagonalization algorithm for Hankel matrices
This paper presents a fast algorithm for bidiagonalizing a Hankel matrix. An m×n Hankel matrix is reduced to a real bidiagonal matrix in O((m+ n)n log(m+ n)) floating-point operations (flops) using the Lanczos method with modified partial orthogonalization and reset schemes to improve its stability. Performance improvement is achieved by exploiting the Hankel structure, as fast Hankel matrix–ve...
متن کاملA fast symmetric SVD algorithm for square Hankel matrices
This paper presents an O(n2 log n) algorithm for computing the symmetric singular value decomposition of square Hankel matrices of order n, in contrast with existing O(n3) SVD algorithms. The algorithm consists of two stages: first, a complex square Hankel matrix is reduced to a complex symmetric tridiagonal matrix using the block Lanczos method in O(n2 log n) flops; second, the singular values...
متن کاملBlock Factorization of Hankel Matrices and Euclidean Algorithm
It is shown that a real Hankel matrix admits an approximate block diagonalization in which the successive transformation matrices are upper triangular Toeplitz matrices. The structure of this factorization was first fully discussed in [1]. This approach is extended to obtain the quotients and the remainders appearing in the Euclidean algorithm applied to two polynomials u(x) and v(x) of degree ...
متن کاملDeterminants of Hankel Matrices
The purpose of this paper is to compute asymptotically Hankel determinants for weights that are supported in a semi-infinite interval. The main idea is to reduce the problem to determinants of other operators whose determinant asymptotics are well known.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 1994
ISSN: 0885-064X
DOI: 10.1006/jcom.1994.1006